

The First Class A-1 Effluent Permit in Montana

Moonlight Basin, Big Sky Montana

Topics

- Effluent Reuse
- Treatment Selection
- Design & Permitting
- Construction
- Project Challenges

Regulation

Montana DEQ Circular DEQ-2, Appendix B

Class A-1 Standard

CLASS	TREATMENT STANDARDS
A-1	Class A-1 reclaimed wastewater must, at all times, be oxidized, coagulated, filtered and disinfected, as described below or defined in this Appendix B. Class A-1 reclaimed wastewater that is treated to the standards below is exempt from ground water permit requirements pursuant to ARM 17.30.1022.
	Following treatment, Class A-1 reclaimed wastewater effluent quality should have approximately 10 mg/L or less of BOD and TSS.
	To achieve the turbidity requirements for Class A-1 reclaimed wastewaters, a treatment process that incorporates coagulation, flocculation, sedimentation and filtration is typically required. See Section 111 (Clarification Processes) for the required design standards.
	Class A-1 reclaimed wastewater must be disinfected such that the median number of total coliform organisms, in the wastewater after disinfection, does not exceed 2.2 colony forming units (CFU) per 100 milliliters, as determined from the bacteriological results of the last seven days for which analyses have been completed and such that the number of total coliform organisms does not exceed 23 CFU per 100 milliliters in any sample.
	Class A-1 reclaimed wastewater has the quality of effluent such that all constituents meet Montana nondegradation requirements prior to application, allowing it to be applied to land at rates that exceed the agronomic uptake rate. Specifically, total nitrogen must not exceed 5.0 mg/L at any time. Per MCA 75-5-410, reclaimed wastewater proposed for aquifer recharge or injection purposes must meet, at a minimum, secondary treatment, as defined in 40 CFR Part 133, and Level II treatment for the removal of nitrogen. For aquifer recharge proposals, the effluent quality must meet either primary drinking water standards or non-degradation requirements at the point of discharge. For aquifer injection proposals, the effluent quality must meet the more stringent of either the primary drinking water standards or the nondegradation requirements at the point of discharge. Soil aquifer treatment (infiltration/percolation basins) may not be considered in meeting these requirements.
	The minimum monitoring level required during periods of use (including prior to seasonal startup, if applicable) must include: continuous turbidity analysis with recorder, weekly total coliform analysis, and biweekly total nitrogen analysis. Weekly disinfectant residual analysis if chemical disinfection is being utilized.*

Allowable Uses of Reclaimed Wastewater	Class of Reclaimed Wastewater Required for Identified Use					
	A-1	A	B-1	В	C	D
Spray Irrigation of Nonfood Crops (greater than agronomic uptake rate)*						
Trees and Fodder, Fiber, and Seed Crops	YES	NO	YES	NO	NO	NO
Sod, Omamental Plants for Commercial Use, and Pasture to Which Milking Cows or Goats Have Access	YES	NO	YES	NO	NO	NO
Drip or Subsurface Irrigation of Nonfood Crops (greater than agronomic uptake rate)* Trees	YES	NO	YES	NO	NO	NO
Spray Irrigation of Food Crops (greater than agronomic uptake rate)*						
Food Crops Which Undergo Physical or Chemical Processing Sufficient to Destroy All Pathogenic Agents	YES	NO	YES	NO	NO	NO
Drip or Subsurface Irrigation of Food Crops (greater than agronomic uptake rate)*						
Food Crops Where There is No Reclaimed wastewater Contact With Edible Portion of Crop (e.g. orchards, vineyards)	YES	NO	YES	NO	NO	NO
Root Crops	YES	NO	NO	NO	NO	NO
Landscape Irrigation (greater than agronomic uptake rate)*						
Restricted Access Areas (e.g., Cemeteries and Freeway Landscapes)	YES	NO	YES	NO	NO	NO
Unrestricted Access Areas (e.g., Golf Courses, Parks, Playgrounds, School Yards and Residential Landscapes)	YES	NO	NO	NO	NO	NO
Impoundments		7.11		h 1		
Landscape Impoundments	YES	NO	NO	NO	NO	NO
Restricted Recreational Impoundments	YES	NO	YES	NO	NO	NO
Unrestricted Recreational Impoundments	YES	NO	NO	NO	NO	NO
Animal & Fish Operations				7.71		
Fish Hatchery Basins (with discharge permit)	YES	YES	YES	NO	NO	NO
Zoo Operations and Animal Shelter Wash Down Water (discharge to sewer)	YES	YES	YES	YES	NO	NO

	Class of Reclaimed Wastewater
Allowable Uses of Reclaimed Wastewater	Required
	for Identified Use

		A-1	A	B-1	В	C	D
	Decorative Fountains (discharge to sewer)	YES	YES	NO	NO	NO	NO
	(discharge to groundwater)	YES	NO	NO	NO	NO	NO
	Jetting and Flushing of Sanitary Sewers	YES	YES	YES	YES	YES	NO
D	Street Cleaning and Washing Operations Street Sweeping, Brush Dampening	YES	YES	YES	YES	YES	NO
	Sidewalks and Parking Lot Washing, Spray	YES	NO	YES	NO	NO	NO
IO	Dust Control and Soil Compaction/Consolidation	+					
10	Unpaved road dust control, road construction compaction, backfill consolidation around pipelines (Not Drinking Water lines)	YES	YES	YES	YES	YES	NO
	Fire Fighting and Fire Protection Systems		- 11				
Ю	Dumping from Aircraft	YES	YES	YES	YES	YES	NO
	Hydrants or Sprinkler Systems in Buildings	YES	YES	NO	NO	NO	NO
10	Toilet and Urinal Flushing	YES	YES	NO	NO	NO	NO
	Washing Aggregate and Concrete Batching Operations (no discharge)	YES	YES	YES	YES	YES	NO
TO	Industrial Uses			1170	1770	rima.	110
10	Aerosols not created (e.g. heat pumps, boilers) (non-discharging recirculation type)	YES	YES	YES	YES	YES	NO
,,,	Aerosols or other mist created (e.g., cooling towers, forced air evaporation, or spraying)	YES	YES	NO	NO	NO	NO
	Aquifer Recharge	. 2022	alar.	1200	1000	1000	124.0
10	Controlled Surface or Subsurface Addition to Replenish the Aquifer **	YES	NO	NO	NO	NO	NO
10	Aquifer Injection Direct Injection into Aquifer for Purpose of Enhancing a Water Right or Allocation **	YES	NO	NO	NO	NO	NO
10	Indirect Potable Reuse Intentional Return of Reclaimed Wastewater to Augment Raw Water Supplies***	YES	YES	NO	NO	NO	NO
10	Stream flow Augmentation Fisheries Support, or Recreational Enhancement with Unrestricted Access ***	YES	YES	YES	YES	NO	NO
10	Snow Making Restricted Access – designed for discharge to groundwater	YES	NO	YES	NO	NO	NO
O	Unrestricted Access – such as ski slopes***	YES	NO	NO	NO	NO	NO
	Omesurence Access — such as sai supes	110	110	100	1,0	130	110

Treatment Selection

Moonlight Basin Resort:

- Original Plant was a trickling filter system treating septic tank effluent. Disposal to drainfield.
- An oxidation ditch treatment plant replaced the original plant. Storage ponds and disposal to forest irrigation.

Treatment Selection

Preliminary Engineering Report

 Make Recommendations For Wastewater Treatment and Disposal Moonlight Basin Wastewater Treatment Plant Improvements

Preliminary Engineering Report

October 2015

Prepared for:

MB MT Acquisition, LLC P.O. Box 160040 Big Sky, MT 59716

Prepared by:

MORRISON-MAIERLE, INC.
PO Box 1113 - Bozeman, MT 5971
406-587-0721 - F-406-972-6702

MMI #: 3958.012

Wastewater Treatment Alternatives

- Single MBR
- Existing Oxidation Ditch, 2 New Oxidation Ditches
- Existing Oxidation Ditch, 2 New SBRs
- Existing Oxidation Ditch, 2 New MBRs

New Plant Effluent Disposal Options

- Golf Irrigation
- Surface Water Discharge
- Groundwater Discharge
- Class A-1 Compatible with Each Option

Wastewater Treatment Selection

• Existing Oxidation Ditch, 2 New MBRs Selected

TABLE 3 CONCEPT TREATMENT ALTERNATIVE RANKING							
Parameter Weight	Single MBR	Exist OD + 2 New OD	Exist OD + 2 New SBR	Exist OD + 2 New MBR			
5	2	3	3	4			
4	4	3	3	4			
3	2	4	3	2			
3	5	3	3	5			
2	3	4	3	3			
	53	56	56	58			
	Parameter Weight 5 4 3	Parameter Weight Single MBR 5 2 4 4 3 2 3 5 2 3	Parameter Weight Single MBR Exist OD + 2 New OD 5 2 3 4 4 3 3 2 4 3 5 3 2 3 4	Parameter Weight Single MBR Exist OD + 2 New OD Exist OD + 2 New SBR 5 2 3 3 4 4 3 3 3 2 4 3 3 5 3 3 2 3 4 3			

Design Pre-Selection

- Request for Proposals
- Solicitation from 3 Manufacturers
- Conducted Interviews
- Three Engineers Reviewed and Scored Proposals

REQUEST FOR PROPOSALS MOONLIGHT BASIN WASTEWATER TREATMENT PLANT #2

MEMBRANE BIOREACTOR (MBR) SYSTEM PRE-SELECTION

Prepared For:

MB MT ACQUISITION, LLC

Prepared By:

March 2016

Design Pre-Selection

• Treatment Requirements

INFLUENT FLOW CHARACTERISTICS

Design Parameter	2018 ¹	2020 ²	2030 ³	2035 ⁴	
Annual Ave Day Flow, gpd	5,500	21,000	99,900	104,700	
Maximum Month Flow, gpd	7,400	27,900	132,800	139,300	
Maximum Day Flow, gpd	12,800	48,600	231,200	242,500	
Peak Hour Flow, gpd	20,700	78,600	373,900	392,000	
15% of Annual Average Flow					

ANNUAL AVERAGE INFLUENT LOAD CRITERIA

Design Parameter	2018 1	2020 ²	2030 ³	2035 4
BOD ₅ , lb/day	12	45	214	224
TSS, lb/day	5	18	87	92
Total Phosphorus, lb/day	0.3	1.2	5.8	6.1
TKN, lb/day	2	9	43	45
NH3-N, lb/day	2	8	37	39

^{15%} of Annual Average Flow

EFFLUENT DESIGN CRITERIA

Design Parameter	Monthly Avg. Concentration	Maximum Concentration			
NH3-N	1 mg/L	1.5 mg/L			
BOD ₅ ¹	5 mg/L	10 mg/L			
TSS ¹	5 mg/L	10 mg/L			
Total Nitrogen ¹	5 mg/L	5 mg/L			
Total Phosphorus	1 mg/L	2 mg/L			
Turbidity	0.2 NTU	0.5 NTU			
Total Coliform ²	<2.2 CFU/100 mL	<23 CFU/100 mL			
¹Based on MDEO Circular DEO-2 Class A-1 Reuse					

²20% of Annual Average Flow

³95% of Annual Average Flow

^{4100%} of Annual Average Flow

²20% of Annual Average Flow

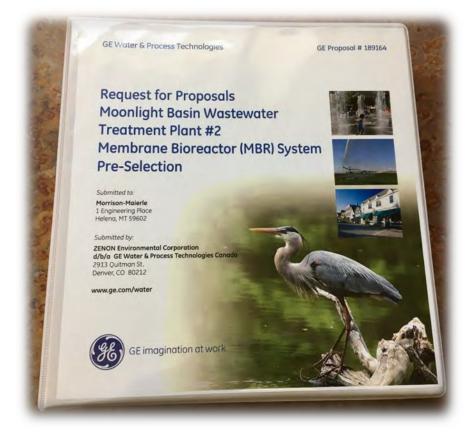
^{395%} of Annual Average Flow

^{4100%} of Annual Average Flow

²UV disinfection follows MBR

Design Pre-Selection

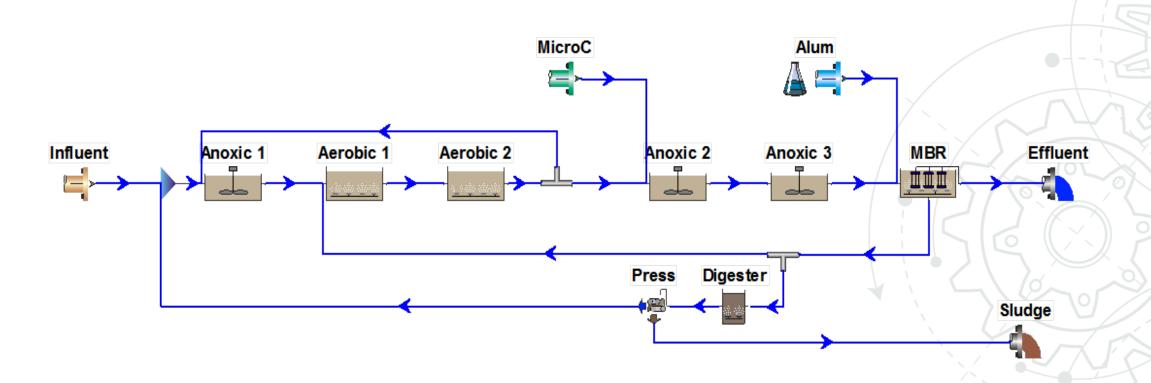
• MBR Requirements


Design Parameter	Requirement	
Influent Characteristics		
Temperature Range	8-18	°C
Alkalinity	236	mg/L as CaCO₃
Membranes		
Number of Membrane Trains (N+1)	3	Minimum
Membrane Type	Ultrafiltration	
Nominal Membrane Pore Size	0.01 - 0.1	μm
Net Flux Rate (Max Day @ 8°C)	10	gfd
Net Flux Rate (Peak Hour @ 8°C)	20	gfd
Design Mixed Liquor Suspended Solids	6,000-12,000	mg/L
System Parameters		
Number of Biological Process Trains (N+1)	3	Minimum
RAS/Mixed Liquor Recycle Rate	3-5 Q	x max month
Internal Mixed Liquor Recycle Rate	2-4 Q	x max month
Number of Process Pumps, Blowers, or Other Equipment (N+1)	3	Minimum
Standard Oxygen Transfer Efficiency (SOTE)	2	%/ <u>ft</u>
Alpha Factor (α)	0.5	max
Beta Factor (β)	0.95	max

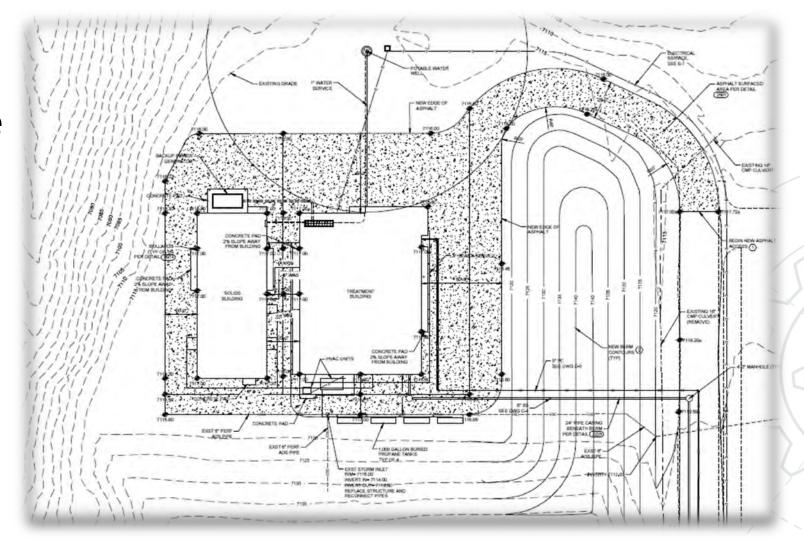
Wastewater Equipment/Process Pre-Selection

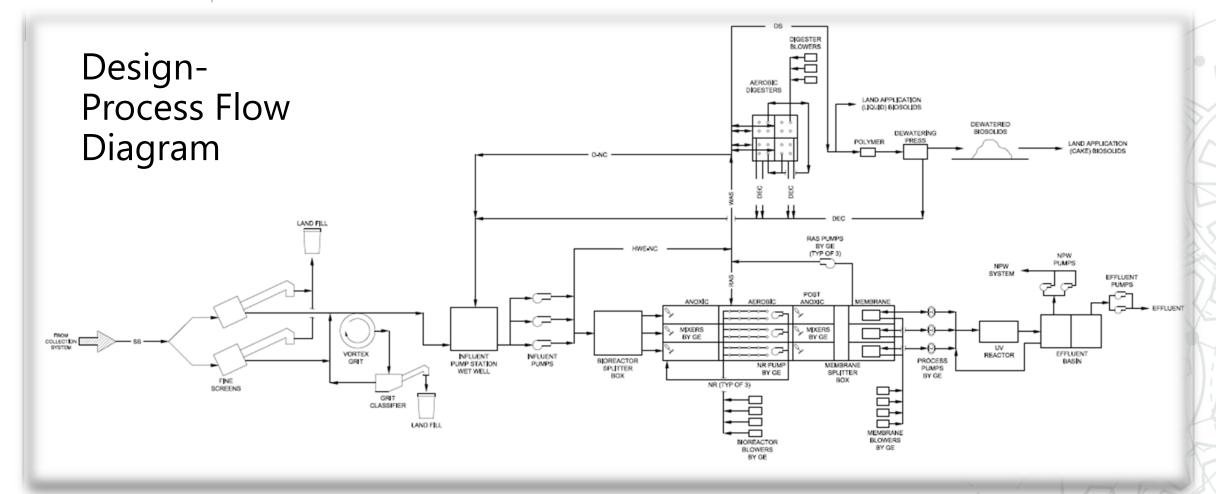
Selected Suez (formerly GE)

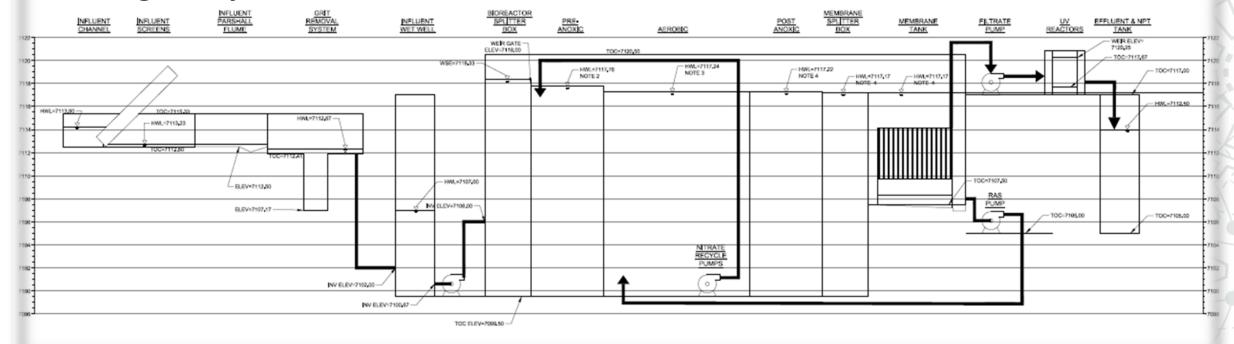
Wastewater Equipment/Process Pre-Selection


- 3 Train Bioreactors and Membrane Basins for Operational Flexibility
- 4 Stage Process- Pre Anoxic, Aerobic, Post Anoxic, Membrane Basin (Aerobic)
- Process Chemical Systems- Sodium Hydroxide, MicroC, and Alum
- Membrane Chemical Systems Sodium Hypochlorite and Citric Acid
- ZW-500 Reinforced Hollow Fiber PVDF Membranes

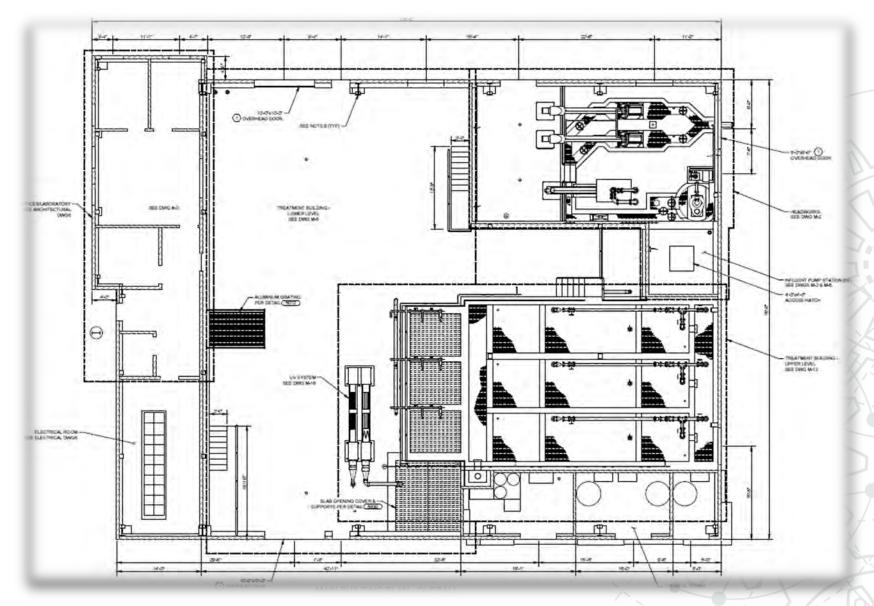
Wastewater Equipment/Process Pre-Selection




Design-Plant Site Plan

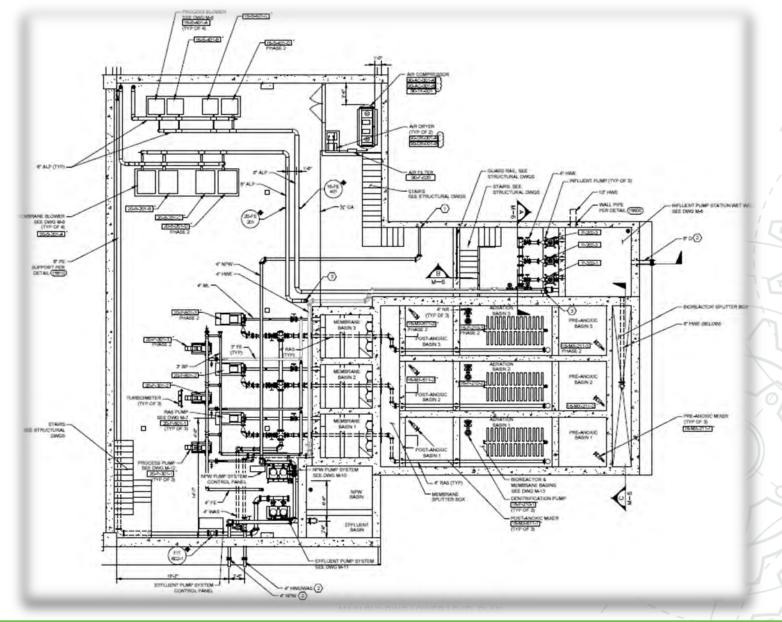


Design- Hydraulic Profile



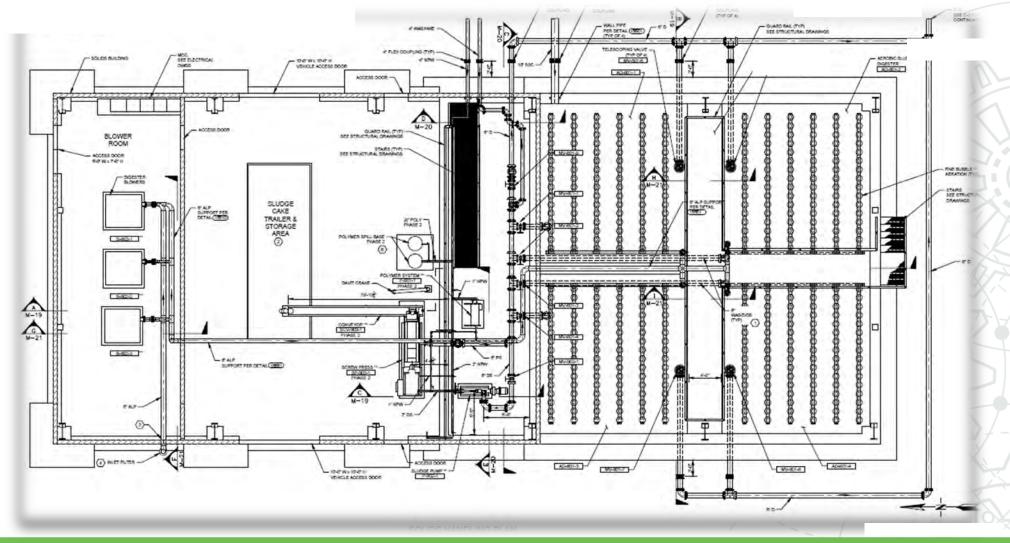
Design- Main Building

Processes Housed Indoors, Separate Headworks, Separate Chemical Rooms, Operator Lab and Offices



Design-Lower Level Area

Access to Equipment, Flooded Suction for Influent Pump Station, MBR Pumping Systems, NPW and Effluent Pumping Systems



Design-Solids Handling

Aerobic Digesters Equalization

Screw Press Dewatering

Permitting

- Plans and Specifications Review Submittal to DEQ, August 31, 2016
- Provided Additional Information About Storage Pond and Golf Irrigation.
- Approved by DEQ: January 23, 2017

Permitting

Monitoring Requirements

Year	Total Coliform	Total Nitrogen	BOD ₅	TSS
1	Weekly	Bi-weekly	Monthly	Monthly
2	Monthly	Monthly	Quarterly	Quarterly
3	Monthly	Quarterly	Quarterly	Quarterly
4 and beyond	Quarterly	Quarterly	Semi-annually	Semi-annually

- Bids Due: January 2018
- Contractor- Dick Anderson Construction
- Original Contract Amount: \$8.36 M
- Work began May 2018
- Completed November 2019
- Final Amount: \$8.63 M

May 3, 2018

July 3, 2018

August 3, 2018

September 14, 2018

October 30, 2018

- Challenge- Dry In For Work To Continue Through The Winter
- Pre-Engineered Steel Buildings

November 30, 2018

January 7, 2019

August 27, 2019

- Start-Up and Seeding
- ~32,000 Gallons From Big Sky County Water & Sewer District

September 30, 2019

Fine Screens

Influent Pumps

Bioreactors and UV

Bioreactors

Process and Membrane Blowers

MBR Pumps

Aerobic Digesters

Challenges and Approaches

- Choosing Treatment and Disposal: Compile a PER to Study and Recommend a Solution
- 1st of a Kind Permitting: Research and Communicate with Regulators
- Existing Infrastructure: Permitting to Allow a New Use Includes Inspections, Testing, and Reports
- Construction: Managing Season and Suppliers
- Start-Up: Provide Initial Operational Support

Questions?

Eric Blanksma, PE

eblanksma@m-m.net

406-495-3434

